International Journal of Molecular Sciences (Jan 2022)

Variations in the Human Serum Albumin Gene: Molecular and Functional Aspects

  • Gianluca Caridi,
  • Francesca Lugani,
  • Andrea Angeletti,
  • Monica Campagnoli,
  • Monica Galliano,
  • Lorenzo Minchiotti

DOI
https://doi.org/10.3390/ijms23031159
Journal volume & issue
Vol. 23, no. 3
p. 1159

Abstract

Read online

The human albumin gene, the most abundant serum protein, is located in the long arm of chromosome 4, near the centromere, position 4q11–3. It is divided by 14 intervening introns into 15 exons, the last of which is untranslated. To date, 74 nucleotide substitutions (mainly missense) have been reported, determining the circulating variants of albumin or pre-albumin. In a heterozygous state, this condition is known as alloalbuminaemia or bisalbuminaemia (OMIM # 103600). The genetic variants are not associated with disease, neither in the heterozygous nor in the homozygous form. Only the variants resulting in familial dysalbuminaemic hyperthyroxinaemia and hypertriiodothyroninaemia are of clinical relevance because affected individuals are at risk of inappropriate treatment or may have adverse drug effects. In 28 other cases, the pathogenic variants (mainly affecting splicing, nonsense, and deletions), mostly in the homozygous form, cause a premature stop in the synthesis of the protein and lead to the condition known as congenital analbuminaemia. In this review, we will summarize the current knowledge of genetic and molecular aspects, functional consequences and potential therapeutic uses of the variants. We will also discuss the molecular defects resulting in congenital analbuminaemia, as well as the biochemical and clinical features of this rare condition

Keywords