Mathematics (Apr 2024)
An Agile Super-Resolution Network via Intelligent Path Selection
Abstract
In edge computing environments, limited storage and computational resources pose significant challenges to complex super-resolution network models. To address these challenges, we propose an agile super-resolution network via intelligent path selection (ASRN) that utilizes a policy network for dynamic path selection, thereby optimizing the inference process of super-resolution network models. Its primary objective is to substantially reduce the computational burden while maximally maintaining the super-resolution quality. To achieve this goal, a unique reward function is proposed to guide the policy network towards identifying optimal policies. The proposed ASRN not only streamlines the inference process but also significantly boosts inference speed on edge devices without compromising the quality of super-resolution images. Extensive experiments across multiple datasets confirm ASRN’s remarkable ability to accelerate inference speeds while maintaining minimal performance degradation. Additionally, we explore the broad applicability and practical value of ASRN in various edge computing scenarios, indicating its widespread potential in this rapidly evolving domain.
Keywords