Sensors (Aug 2024)

Unity and ROS as a Digital and Communication Layer for Digital Twin Application: Case Study of Robotic Arm in a Smart Manufacturing Cell

  • Maulshree Singh,
  • Jayasekara Kapukotuwa,
  • Eber Lawrence Souza Gouveia,
  • Evert Fuenmayor,
  • Yuansong Qiao,
  • Niall Murry,
  • Declan Devine

DOI
https://doi.org/10.3390/s24175680
Journal volume & issue
Vol. 24, no. 17
p. 5680

Abstract

Read online

A digital twin (DT) is a virtual/digital model of any physical object (physical twin), interconnected through data exchange. In the context of Industry 4.0, DTs are integral to intelligent automation driving innovation at scale by providing significant improvements in precision, flexibility, and real-time responsiveness. A critical challenge in developing DTs is achieving a model that reflects real-time conditions with precision and flexibility. This paper focuses on evaluating latency and accuracy, key metrics for assessing the efficacy of a DT, which often hinder scalability and adaptability in robotic applications. This article presents a comprehensive framework for developing DTs using Unity and Robot Operating System (ROS) as the main layers of digitalization and communication. The MoveIt package was used for motion planning and execution for the robotic arm, showcasing the framework’s versatility independent of proprietary constraints. Leveraging the versatility and open-source nature of these tools, the framework ensures interoperability, adaptability, and scalability, crucial for modern smart manufacturing applications. Our approach was validated by conducting extensive accuracy and latency tests. We measured latency by timestamping messages exchanged between the physical and digital twin, achieving a latency of 77.67 ms. Accuracy was assessed by comparing the joint positions of the DT and the physical robotic arm over multiple cycles, resulting in an accuracy rate of 99.99%. The results highlight the potential of DTs in enhancing operational efficiency and decision-making in manufacturing environments.

Keywords