Ecotoxicology and Environmental Safety (Sep 2024)

Impacts of prenatal environmental exposures on fetal-placental-maternal bile acid homeostasis and long-term health in offspring

  • Wen Huang,
  • Wen Hu,
  • Man Fang,
  • Qi Zhang,
  • Yuanzhen Zhang,
  • Hui Wang

Journal volume & issue
Vol. 283
p. 116929

Abstract

Read online

During pregnancy, the maternal body undergoes a series of adaptative physiological changes, leading to a slight increase in serum bile acid (BA) levels. Although the fetal liver can synthesize BAs since the first trimester through the alternative pathway, the BA metabolic system is immature in the fetus. Compared to adults, the fetus has a distinct composition of BA pool and limited expression of BA synthesis enzymes and transporters. Besides, the “enterohepatic circulation” of BAs is absent in fetus. Thus, fetal BAs need to be transported to the mother through the placenta for further metabolism and excretion, and maternal BAs can also be transported to the fetus. That is what we call the “fetal-placental-maternal BA circulation”. Various BA transporters and nuclear receptors are essential for maintaining the balance of this BA circulation to ensure normal fetal development. However, prenatal adverse environments can alter fetal BA metabolism, resulting in intrauterine developmental abnormalities and susceptibility to a variety of adult chronic diseases. This review summarizes the current understanding of the fetal-placental-maternal BA circulation and discusses the effects of prenatal adverse environments on this particular BA circulation, aiming to provide a theoretical basis for exploring early prevention and treatment strategies for BA metabolism-associated adverse pregnancy outcomes and long-term impairments.

Keywords