Sensors (Nov 2021)

The Staircase Drive—A Novel Actuator Design Optimised for Daisy-Chaining and Minimum Stress Load Coupling

  • Falk-Martin Hoffmann,
  • Keith R. Holland,
  • Nick R. Harris,
  • Neil M. White,
  • Filippo Maria Fazi

DOI
https://doi.org/10.3390/s21227740
Journal volume & issue
Vol. 21, no. 22
p. 7740

Abstract

Read online

This work presents a novel type of actuator that improves over the standard cantilever by permitting daisy-chaining while minimising stress to the joint connecting to the load. A detailed structural and functional comparison of the proposed device against the cantilever actuator as a baseline is given, led by a brief revision of the cantilever actuator as the state-of-the-art that highlights its limitations with respect to daisy-chaining and the stress it inherently creates within the joint connecting to the load when attempting out-of-plane displacement without rotation. Simulations of both devices’ performance confirm that the newly proposed device yields the targeted displacement profile that both enables the daisy-chaining of such a device into a higher-order actuator for increased displacement and reduce stress in the joint with the load. This comes at the cost of reduced maximum displacement compared to the cantilever, which can be overcome by daisy-chaining. The proposed device’s performance is further evaluated on the basis of manufactured prototypes measured by means of a laser scanning vibrometer. The prototype was manufactured on a 150 μm alumina substrate, and both electrodes and piezoelectric layer were deposited in a thick-film printing process.

Keywords