Open Life Sciences (Aug 2022)

Preparation and evaluation of LA-PEG-SPION, a targeted MRI contrast agent for liver cancer

  • Xia Lei,
  • Song Xiaowei,
  • Yan Guanghai,
  • Quan Jishan,
  • Jin Guangyu

DOI
https://doi.org/10.1515/biol-2022-0074
Journal volume & issue
Vol. 17, no. 1
pp. 952 – 959

Abstract

Read online

This study aims to synthesize a magnetic resonance imaging (MRI) contrast agent that can specifically target the asialoglycoprotein receptor of liver cancer cells and evaluate its ability as a targeted MRI contrast agent. Lactobionic acid (LA) and polyethylene glycol (PEG) were used to modify superparamagnetic iron oxide nanoparticles (SPION) to obtain LA-PEG-SPION. LA-PEG-SPION was uniformly spherical under the electron microscope, with regular morphology and good dispersion. The particle size of LA-PEG-SPION was about 30 ± 4.5 nm, and its surface potential was about 31 ± 1.5 mV. LA-PEG-SPION had no toxicity or low toxicity to HepG2 cells and HeLa cells, even at 400 μg/mL. The uptake of LA-PEG-SPION by HepG2 cells was higher than that of SPION, with increased blue-stained particles. The fluorescent labeling rate of HepG2 cells reached 68.8%, which was higher than that of the control group. In vitro, MRI showed that the T2-weighted signal intensity of HepG2 cells was lower than that of the control group. Conclusively, LA-PEG-SPION nanoparticles are synthesized in a simple and efficient way. They are successfully applied to the T2-weighted contrast-enhanced MRI in liver cancer in vitro, and they have the potential to be used for in vivo research and clinical studies.

Keywords