Journal of Marine Science and Engineering (Nov 2024)
Analytical Modeling of the Lazy-Wave Hydrogen Production Riser (HPR) with Incorporation of Seabed Interaction in the Touchdown Zone
Abstract
Hydrogen production risers (HPRs) connected to floating offshore wind turbines (FOWTs) must be properly configured to minimize both the top-end tension at the hang-off point and the oscillation amplitude in the touchdown zone (TDZ) under environmental loads. One of the best riser configurations to meet these requirements is the lazy-wave configuration, where the riser is lifted midway by buoyancy tanks to create a negative curvature, mitigating the motion dependency of the catenary part and the TDZ. Analytical solutions can be effectively used in riser optimization and configuration studies, where a large number of analyses need to be conducted iteratively. In this paper, an analytical model for HPRs has been developed by combining different approaches for the hanging and touchdown zones to improve the accuracy and continuity of shear force, bending moment, and axial tension distribution along the riser, which are the key parameters governing fatigue damage accumulation in the TDZ. Modified catenary equations were used for the hanging part, and a boundary layer model was implemented in the touchdown zone to model the seabed interaction, preventing stress discontinuity between the two sections. The model was used to assess a case study and compared with numerical simulations to ensure accuracy and viability. The proposed model can be used in daily engineering practice for preliminary investigations and optimization studies of HPRs.
Keywords