Journal of Marine Science and Engineering (Dec 2023)
Ocean Wind Speed Prediction Based on the Fusion of Spatial Clustering and an Improved Residual Graph Attention Network
Abstract
Accurately predicting wind speed is crucial for the generation efficiency of offshore wind energy. This paper proposes an ultra-short-term wind speed prediction method using a graph neural network with a multi-head attention mechanism. The methodology aims to effectively explore the spatio-temporal correlations present in offshore wind speed data to enhance the accuracy of wind speed predictions. Initially, the offshore buoys are organized into a graphical network. Subsequently, in order to cluster the nodes with comparable spatio-temporal features, it clusters the nearby nodes around the target node. Then, a multi-head attention mechanism is incorporated to prioritize the interconnections among distinct regions. In the construction of the graph neural network, a star topology structure is formed by connecting additional nodes to the target node at the center. The effectiveness of this methodology is validated and compared to other time series-based approaches through comparative testing. Metrics such as Mean Absolute Error, Mean Squared Error, Root Mean Squared Error, and R yielded values of 0.364, 0.239, 0.489, and 0.985, respectively. The empirical findings indicate that graph neural networks utilizing a multi-head attention mechanism exhibit notable benefits in the prediction of offshore wind speed, particularly when confronted with intricate marine meteorological circumstances.
Keywords