Energies (Mar 2021)
State of Charge (SOC) Estimation Based on Extended Exponential Weighted Moving Average H<sub>∞</sub> Filtering
Abstract
When the classical H∞ algorithm (HIF) is applied to estimate the state of charge (SOC) of a lithium battery, the influence of historical data is usually ignored, resulting in an increase in the estimation error. In order to improve the accuracy of SOC estimation, this paper proposes an extended exponential weighted moving average H∞ algorithm (EE-HIF) in view of the influence of historical data. By designing the Gaussian function, the weighted distribution of the data at different times can effectively reduce the estimation error caused by the inaccuracy of the lithium battery model. In addition, when the system contains Gaussian white noise and alternating current input, the proposed method can achieve a faster convergence speed and better robustness. Simulation results show the advantages of the proposed algorithm, as compared to an HIF filtering algorithm and an exponentially weighted moving average H∞ algorithm (EWMA).
Keywords