European Physical Journal C: Particles and Fields (Sep 2022)

Potential for a precision measurement of solar pp neutrinos in the Serappis experiment

  • Lukas Bieger,
  • Thilo Birkenfeld,
  • David Blum,
  • Wilfried Depnering,
  • Timo Enqvist,
  • Heike Enzmann,
  • Feng Gao,
  • Christoph Genster,
  • Alexandre Göttel,
  • Christian Grewing,
  • Maxim Gromov,
  • Paul Hackspacher,
  • Caren Hagner,
  • Tobias Heinz,
  • Philipp Kampmann,
  • Michael Karagounis,
  • Andre Kruth,
  • Pasi Kuusiniemi,
  • Tobias Lachenmaier,
  • Daniel Liebau,
  • Runxuan Liu,
  • Kai Loo,
  • Livia Ludhova,
  • David Meyhöfer,
  • Axel Müller,
  • Pavithra Muralidharan,
  • Lothar Oberauer,
  • Rainer Othegraven,
  • Nina Parkalian,
  • Yatian Pei,
  • Oliver Pilarczyk,
  • Henning Rebber,
  • Markus Robens,
  • Christian Roth,
  • Julia Sawatzki,
  • Konstantin Schweizer,
  • Giulio Settanta,
  • Maciej Slupecki,
  • Oleg Smirnov,
  • Achim Stahl,
  • Hans Steiger,
  • Jochen Steinmann,
  • Tobias Sterr,
  • Matthias Raphael Stock,
  • Jian Tang,
  • Eric Theisen,
  • Alexander Tietzsch,
  • Wladyslaw Trzaska,
  • Johannes van den Boom,
  • Stefan van Waasen,
  • Cornelius Vollbrecht,
  • Christopher Wiebusch,
  • Bjoern Wonsak,
  • Michael Wurm,
  • Christian Wysotzki,
  • Yu Xu,
  • Ugur Yegin,
  • Andre Zambanini,
  • Jan Züfle

DOI
https://doi.org/10.1140/epjc/s10052-022-10725-y
Journal volume & issue
Vol. 82, no. 9
pp. 1 – 12

Abstract

Read online

Abstract The Serappis (SEarch for RAre PP-neutrinos In Scintillator) project aims at a precision measurement of the flux of solar pp neutrinos on the few-percent level. Such a measurement will be a relevant contribution to the study of solar neutrino oscillation parameters and a sensitive test of the equilibrium between solar energy output in neutrinos and electromagnetic radiation (solar luminosity constraint). The concept of Serappis relies on a small organic liquid scintillator detector ( $$\sim $$ ∼ 20 m $$^3$$ 3 ) with excellent energy resolution ( $$\sim $$ ∼ 2.5% at 1 MeV), low internal background and sufficient shielding from surrounding radioactivity. This can be achieved by a minor upgrade of the OSIRIS facility at the site of the JUNO neutrino experiment in southern China. To go substantially beyond current accuracy levels for the pp flux, an organic scintillator with ultra-low $$ {^{14}\hbox {C}}$$ 14 C levels (below $$10^{-18}$$ 10 - 18 ) is required. The existing OSIRIS detector and JUNO infrastructure will be instrumental in identifying suitable scintillator materials, offering a unique chance for a low-budget high-precision measurement of a fundamental property of our Sun that will be otherwise hard to access.