International Journal of Cognitive Computing in Engineering (Jun 2023)

COVINet: A hybrid model for classification of COVID and Non-COVID pneumonia in CT and X-Ray imagery

  • Vasu Mittal,
  • Akhil Kumar

Journal volume & issue
Vol. 4
pp. 149 – 159

Abstract

Read online

The COVID-19 pandemic has resulted in a significant increase in the number of pneumonia cases, including those caused by the Coronavirus. To detect COVID pneumonia, RT-PCR is used as the primary detection tool for COVID-19 pneumonia but chest imaging, including CT scans and X-Ray imagery, can also be used as a secondary important tool for the diagnosis of pneumonia, including COVID pneumonia. However, the interpretation of chest imaging in COVID-19 pneumonia can be challenging, as the signs of the disease on imaging may be subtle and may overlap with normal pneumonia. In this paper, we propose a hybrid model with the name COVINet which uses ResNet-101 as the feature extractor and classical K-Nearest Neighbors as the classifier that led us to give automated results for detecting COVID pneumonia in X-Rays and CT imagery. The proposed hybrid model achieved a classification accuracy of 98.6%. The model's precision, recall, and F1-Score values were also impressive, ranging from 98-99%. To back and support the proposed model, several CNN-based feature extractors and classical machine learning classifiers have been exploited. The outcome with exploited combinations suggests that our model can significantly enhance the accuracy and precision of detecting COVID-19 pneumonia on chest imaging, and this holds the potential of being a valuable resource for early identification and diagnosis of the illness by radiologists and medical practitioners.

Keywords