Remote Sensing (Aug 2023)

An Automatic Method for Delimiting Deformation Area in InSAR Based on HNSW-DBSCAN Clustering Algorithm

  • Jianfeng Han,
  • Xuefei Guo,
  • Runcheng Jiao,
  • Yun Nan,
  • Honglei Yang,
  • Xuan Ni,
  • Danning Zhao,
  • Shengyu Wang,
  • Xiaoxue Ma,
  • Chi Yan,
  • Chi Ma,
  • Jia Zhao

DOI
https://doi.org/10.3390/rs15174287
Journal volume & issue
Vol. 15, no. 17
p. 4287

Abstract

Read online

InSAR (Interferometric Synthetic Aperture Radar) is widely recognized as a crucial remote sensing tool for monitoring various geological disasters because it provides all-day and all-weather monitoring. Nevertheless, the current interpretation methods for InSAR heavily depend on the interpreter’s experience, which hinders efficiency and fails to meet the requirements for the timely detection of geologic hazards. Furthermore, the results obtained through current InSAR processing carry inherent noise interference, further complicating the interpretation process. To address those issues, this paper proposes an approach that enables automatic and rapid identification of deformation zones. The proposed method leverages IPTA (Interferometric Point Target Analysis) technology for SAR data processing. It combines the power of HNSW (Hierarchical Navigable Small Word) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithms to cluster deformation results. Compared with traditional methods, the computational efficiency of the proposed method is improved by 11.26 times, and spatial noise is suppressed. Additionally, the clustering results are fused with slope units determined using DEM (Digital Elevation Model), which facilitates the automatic identification of slopes experiencing deformation. The experimental verification in the western mountainous area of Beijing has identified 716 hidden danger areas, and this method is superior to the traditional technology in speed and automation.

Keywords