Remote Sensing (Nov 2023)

Is Spectral Unmixing Model or Nonlinear Statistical Model More Suitable for Shrub Coverage Estimation in Shrub-Encroached Grasslands Based on Earth Observation Data? A Case Study in Xilingol Grassland, China

  • Zhengyong Xu,
  • Bin Sun,
  • Wangfei Zhang,
  • Zhihai Gao,
  • Wei Yue,
  • Han Wang,
  • Zhitao Wu,
  • Sihan Teng

DOI
https://doi.org/10.3390/rs15235488
Journal volume & issue
Vol. 15, no. 23
p. 5488

Abstract

Read online

Due to the effects of global climate change and altered human land-use patterns, typical shrub encroachment in grasslands has become one of the most prominent ecological problems in grassland ecosystems. Shrub coverage can quantitatively indicate the degree of shrub encroachment in grasslands; therefore, real-time and accurate monitoring of shrub coverage in large areas has important scientific significance for the protection and restoration of grassland ecosystems. As shrub-encroached grasslands (SEGs) are a type of grassland with continuous and alternating growth of shrubs and grasses, estimating shrub coverage is different from estimating vegetation coverage. It is not only necessary to consider the differences in the characteristics of vegetation and non-vegetation variables but also the differences in characteristics of shrubs and herbs, which can be a challenging estimation. There is a scientific need to estimate shrub coverage in SEGs to improve our understanding of the process of shrub encroachment in grasslands. This article discusses the spectral differences between herbs and shrubs and further points out the possibility of distinguishing between herbs and shrubs. We use Sentinel-2 and Gao Fen-6 (GF-6) Wide Field of View (WFV) as data sources to build a linear spectral mixture model and a random forest (RF) model via space–air–ground collaboration and investigate the effectiveness of different data sources, features and methods in estimating shrub coverage in SEGs, which provide promising ways to monitor the dynamics of SEGs. The results showed that (1) the linear spectral mixture model can hardly distinguish between shrubs and herbs from medium-resolution images in the SEG. (2) The RF model showed high estimation accuracy for shrub coverage in the SEG; the estimation accuracy (R2) of the Sentinel-2 image was 0.81, and the root-mean-square error (RMSE) was 0.03. The R2 of the GF6-WFV image was 0.72, and the RMSE was 0.03. (3) Texture feature introduced in RF models are helpful to estimate shrub coverage in SEGs. (4) Regardless of the linear spectral mixture model or the RF model being employed, the Sentinel-2 image presented a better estimation than the GF6-WFV image; thus, this data has great potential to monitor shrub encroachment in grasslands. This research aims to provide a scientific basis and reference for remote sensing-based monitoring of SEGs.

Keywords