Crystals (Apr 2023)

A Novel Strategy for Comprehensive Estimation of Lattice Energy, Bulk Modulus, Chemical Hardness and Electronic Polarizability of <i>A<sup>N</sup>B<sup>8-N</sup></i> Binary Inorganic Crystals

  • Xinyu Zhao,
  • Xiaoli Wang

DOI
https://doi.org/10.3390/cryst13040668
Journal volume & issue
Vol. 13, no. 4
p. 668

Abstract

Read online

How to search for a convenient method without a complicated calculation process to predict the physicochemical properties of inorganic crystals through a simple micro-parameter is a greatly important issue in the field of materials science. Herein, this paper presents a new and facile technique for the comprehensive estimation of lattice energy (U), bulk modulus (B), chemical hardness (ƞ), and electronic polarizability (α), just by using a simple mathematic fitting formula with a few structure parameters, such as the systems of rock salt crystals (group I–VII, II–VI) and tetrahedral coordinated crystals (group II–VI, III–V). For the typical binary ANB8-N crystal systems, our present conclusions suggest that a good quantitative correlation between U, B, ƞ, α and chemical bond length (d) is observed, the normal mathematical expression is P = a·db (P represents these physicochemical parameters), constants a and b depend on the type of crystals, and the relevant squares of the correlation coefficient (R2) are larger than 0.9. The results indicate that lattice energy, bulk modulus, and chemical hardness decrease with increases in chemical bond length, but electronic polarizability increases with an increase in chemical bond length. Meanwhile, the new data on the lattice energy, bulk modulus, chemical hardness, and electronic polarizability values of binary ANB8-N crystal systems considered in the present study are calculated via the obtained curve fitting equations without any complex calculation process. We find that there is a very good linear trend in our calculated results along with the values reported in the literature. The present study will be important in solid-state chemistry, which may give researchers useful guidance in searching for relevant data for predicting the properties of new materials or synthetic routes based on a simple mathematic empirical model.

Keywords