Fokus (Dec 2016)
Teorema Pohon Matriks Untuk Menentukan Banyaknya Pohon Rentangan Graf Bipartisi Komplit (Km,n)
Abstract
This research aims to observes panning tree number of complete bipartite graph (Km,n) by matrix-tree theorem.This research was using library research method which the step are:(1)Drawing complete bipartite graph (Km,n) where m= 1,2,3,4,and; (2)Determinin adjacency matrix and degree matrix of complete bipartite graph (Km,n); (3)Observing the different between degree matrix and adjacency matrix (laplacian matrix) from complete bipartite graph (Km,n); (4)Observing cofactor value of laplacian matrix from complete bipartite graph (Km,n); (5)Observing spanning tree number pattern from complete bipartite graph (Km,n); (6)Forming the formula within theorem; (7)Proving the theorem. The results of this research are as follows that the general form spanning tree number incomplete bipartite graph(Km,n) with m=1,2,3,4, n 1 and m, n ∈N where is: τ(Km,n) = m^(n-1).n^(m-1)
Keywords