Physics Letters B (Mar 2021)

Testing primordial black holes as dark matter in supergravity from gravitational waves

  • Yermek Aldabergenov,
  • Andrea Addazi,
  • Sergei V. Ketov

Journal volume & issue
Vol. 814
p. 136069

Abstract

Read online

We explore the Gravitational Waves (GW) phenomenology of a simple class of supergravity models that can explain and unify inflation and Primordial Black Holes (PBH) as Dark Matter (DM). Our (modified) supergravity models naturally lead to a two-field attractor-type double inflation, whose first stage is driven by Starobinsky scalaron and the second stage is driven by another scalar belonging to a supergravity multiplet. The PBHs formation in our supergravity models is efficient, compatible with all observational constraints, and predicts a stochastic GW background. We compute the PBH-induced GW power spectrum and show that GW signals can be detected within the sensitivity curves of the future space-based GW interferometers such as LISA, DECIGO, TAIJI and TianQin projects, thus showing predictive power of supergravity in GW physics and their compatibility.