Journal of Neuroinflammation (Dec 2019)

IL-1β-driven amyloid plaque clearance is associated with an expansion of transcriptionally reprogrammed microglia

  • Fátima Rivera-Escalera,
  • Jonathan J. Pinney,
  • Laura Owlett,
  • Hoda Ahmed,
  • Juilee Thakar,
  • John A. Olschowka,
  • Michael R. Elliott,
  • M. Kerry O’Banion

DOI
https://doi.org/10.1186/s12974-019-1645-7
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Neuroinflammation is thought to contribute to the pathogenesis of Alzheimer’s disease (AD), yet numerous studies have demonstrated a beneficial role for neuroinflammation in amyloid plaque clearance. We have previously shown that sustained expression of IL-1β in the hippocampus of APP/PS1 mice decreases amyloid plaque burden independent of recruited CCR2+ myeloid cells, suggesting resident microglia as the main phagocytic effectors of IL-1β-induced plaque clearance. To date, however, the mechanisms of IL-1β-induced plaque clearance remain poorly understood. Methods To determine whether microglia are involved in IL-1β-induced plaque clearance, APP/PS1 mice induced to express mature human IL-1β in the hippocampus via adenoviral transduction were treated with the Aβ fluorescent probe methoxy-X04 (MX04) and microglial internalization of fibrillar Aβ (fAβ) was analyzed by flow cytometry and immunohistochemistry. To assess microglial proliferation, APP/PS1 mice transduced with IL-1β or control were injected intraperitoneally with BrdU and hippocampal tissue was analyzed by flow cytometry. RNAseq analysis was conducted on microglia FACS sorted from the hippocampus of control or IL-1β-treated APP/PS1 mice. These microglia were also sorted based on MX04 labeling (MX04+ and MX04− microglia). Results Resident microglia (CD45loCD11b+) constituted > 70% of the MX04+ cells in both Phe- and IL-1β-treated conditions, and < 15% of MX04+ cells were recruited myeloid cells (CD45hiCD11b+). However, IL-1β treatment did not augment the percentage of MX04+ microglia nor the quantity of fAβ internalized by individual microglia. Instead, IL-1β increased the total number of MX04+ microglia in the hippocampus due to IL-1β-induced proliferation. In addition, transcriptomic analyses revealed that IL-1β treatment was associated with large-scale changes in the expression of genes related to immune responses, proliferation, and cytokine signaling. Conclusions These studies show that IL-1β overexpression early in amyloid pathogenesis induces a change in the microglial gene expression profile and an expansion of microglial cells that facilitates Aβ plaque clearance.

Keywords