Open Physics (Nov 2021)

Quantum computing simulation of the hydrogen molecular ground-state energies with limited resources

  • Abu-Nada Ali

DOI
https://doi.org/10.1515/phys-2021-0071
Journal volume & issue
Vol. 19, no. 1
pp. 628 – 633

Abstract

Read online

In this article, the hydrogen molecular ground-state energies using our algorithm based on quantum variational principle are calculated. They are calculated through a simulator since the system of the present study (i.e., the hydrogen molecule) is relatively small and hence the ground-state energies for this molecule are efficiently classically simulable using a simulator. Complete details of this algorithm are elucidated. For this, a full description on the fermions–qubits and the molecular Hamiltonian–qubit Hamiltonian transformations, is given. The authors search for qubit system parameters (θ0{\theta }_{0} and θ1{\theta }_{1}) that yield the minimum energies for the system and also study the ground state energies as a function of the molecular bond length. Proposed circuit is humble and does not include many parameters compared with that of Kandala et al., the authors control only two parameters (θ0{\theta }_{0} and θ1{\theta }_{1}).

Keywords