Atmosphere (Aug 2024)

Integrated Analysis of Methane Cycles and Trends at the WMO/GAW Station of Lamezia Terme (Calabria, Southern Italy)

  • Francesco D’Amico,
  • Ivano Ammoscato,
  • Daniel Gullì,
  • Elenio Avolio,
  • Teresa Lo Feudo,
  • Mariafrancesca De Pino,
  • Paolo Cristofanelli,
  • Luana Malacaria,
  • Domenico Parise,
  • Salvatore Sinopoli,
  • Giorgia De Benedetto,
  • Claudia Roberta Calidonna

DOI
https://doi.org/10.3390/atmos15080946
Journal volume & issue
Vol. 15, no. 8
p. 946

Abstract

Read online

Due to its high short-term global warming potential (GWP) compared to carbon dioxide, methane (CH4) is a considerable agent of climate change. This research is aimed at analyzing data on methane gathered at the GAW (Global Atmosphere Watch) station of Lamezia Terme (Calabria, Southern Italy) spanning seven years of continuous measurements (2016–2022) and integrating the results with key meteorological data. Compared to previous studies on detected methane mole fractions at the same station, daily-to-yearly patterns have become more prominent thanks to the analysis of a much larger dataset. Overall, the yearly increase of methane at the Lamezia Terme station is in general agreement with global measurements by NOAA, though local peaks are present, and an increase linked to COVID-19 is identified. Seasonal changes and trends have proved to be fully cyclic, with the daily cycles being largely driven by local wind circulation patterns and synoptic features. Outbreak events have been statistically evaluated depending on their weekday of occurrence to test possible correlations with anthropogenic activities. A cross analysis between methane peaks and specific wind directions has also proved that local sources may be deemed responsible for the highest mole fractions.

Keywords