Nanomedicine Research Journal (Nov 2020)
Caffeic Acid Phenethyl Ester Loaded Poly (ε -caprolactone) Nanoparticles for Improved Anticancer Efficacy: Formulation Development, Characterization and in Vitro Cytotoxicity Study
Abstract
Caffeic acid phenethyl ester (CAPE) is a active constituent of propolis and well known for its anticancer potential. The therapeutic efficacy of CAPE is limited with its poor water solubility and low bioavailability. In present study CAPE loaded Poly (ε-caprolactone) nanoparticles formulation (denoted as CPL) was designed and investigated to improve solubility, achieve sustained drug release and enhance anticancer efficacy. Formulation development, characterization and optimization were carried out by design of experiment approach. Developed formulations were evaluated in detail for nanoparticle characterization and in vitro cytotoxicity study. Developed nanoparticles showed particle size and encapsulation efficiency of 187 ± 2 - 220 ± 2 nm and 64.37+ 1.20- 74.80+ 1.45% respectively. Optimized formulation showed sustained drug release over a period of 36 h. Moreover, concentration of the drug needed for total growth inhibition of cells in a designed time period (TGI) was decreased by 40.87% for CPL as compared to CAPE in human breast cancer MCF-7 cells and 23.73% in human colon cancer cells HT-29 indicating improved cytotoxicity of CAPE. The study proven that the developed CPL exhibited improved solubility, sustained drug release, enhanced in vitro cytotoxicity in MCF-7 and HT-29 cell lines in comparison with pure CAPE. Thus the proposed system may be served as a useful tool for cancer treatment.
Keywords