Drones (Dec 2024)
A Novel Spherical Shortest Path Planning Method for UAVs
Abstract
As a central subdivision of the low-altitude economy industry, industrial and consumer drones have broad market application prospects and are becoming the primary focus of the low-altitude economy; however, with increasing aircraft density, effective planning of reasonable flight paths and avoiding conflicts between flight paths have become critical issues in UAV clustering. Current UAV path planning often concentrates on 2D and 3D realistic scenes, which do not meet the actual requirements of realistic spherical paths. This paper has proposed a Gradient-Based Optimization algorithm based on the State Transition function (STGBO) to address the spherical path planning problem for UAV clusters. The state transition function is applied on the scale of medium and high-dimensional cities, balancing the stability and efficiency of the algorithm. Through evolution and comparisons with many mainstream meta-heuristic algorithms, STGBO has demonstrated superior performance and effectiveness in solving Medium-Altitude Unmanned Aerial Vehicle (MUAV) path planning problems on three-dimensional spherical surfaces, contributing to the development of the low-altitude economy.
Keywords