Communications Physics (Oct 2023)
X-ray induced Coulomb explosion imaging of transient excited-state structural rearrangements in CS2
- James Unwin,
- Felix Allum,
- Mathew Britton,
- Ian Gabalski,
- Hubertus Bromberger,
- Mark Brouard,
- Philip H. Bucksbaum,
- Taran Driver,
- Nagitha Ekanayake,
- Diksha Garg,
- Eva Gougoula,
- David Heathcote,
- Andrew J. Howard,
- Paul Hockett,
- David M. P. Holland,
- Sonu Kumar,
- Chow-shing Lam,
- Jason W. L. Lee,
- Joseph McManus,
- Jochen Mikosch,
- Dennis Milesevic,
- Russell S. Minns,
- Christina C. Papadopoulou,
- Christopher Passow,
- Weronika O. Razmus,
- Anja Röder,
- Arnaud Rouzée,
- Michael Schuurman,
- Alcides Simao,
- Albert Stolow,
- Atia Tul-Noor,
- Claire Vallance,
- Tiffany Walmsley,
- Daniel Rolles,
- Benjamin Erk,
- Michael Burt,
- Ruaridh Forbes
Affiliations
- James Unwin
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford
- Felix Allum
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford
- Mathew Britton
- Linac Coherent Light Source, SLAC National Accelerator Laboratory
- Ian Gabalski
- Stanford PULSE Institute, SLAC National Accelerator Laboratory
- Hubertus Bromberger
- Deutsches Elektronen-Synchrotron DESY
- Mark Brouard
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford
- Philip H. Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory
- Taran Driver
- Linac Coherent Light Source, SLAC National Accelerator Laboratory
- Nagitha Ekanayake
- Deutsches Elektronen-Synchrotron DESY
- Diksha Garg
- Deutsches Elektronen-Synchrotron DESY
- Eva Gougoula
- Deutsches Elektronen-Synchrotron DESY
- David Heathcote
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford
- Andrew J. Howard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory
- Paul Hockett
- National Research Council Canada
- David M. P. Holland
- Daresbury Laboratory, Daresbury
- Sonu Kumar
- Deutsches Elektronen-Synchrotron DESY
- Chow-shing Lam
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford
- Jason W. L. Lee
- Deutsches Elektronen-Synchrotron DESY
- Joseph McManus
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford
- Jochen Mikosch
- Institut für Physik, Universität Kassel
- Dennis Milesevic
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford
- Russell S. Minns
- School of Chemistry, University of Southampton, Highfield
- Christina C. Papadopoulou
- Deutsches Elektronen-Synchrotron DESY
- Christopher Passow
- Deutsches Elektronen-Synchrotron DESY
- Weronika O. Razmus
- School of Chemistry, University of Southampton, Highfield
- Anja Röder
- Max-Born-Institute
- Arnaud Rouzée
- Max-Born-Institute
- Michael Schuurman
- National Research Council Canada
- Alcides Simao
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II
- Albert Stolow
- National Research Council Canada
- Atia Tul-Noor
- Deutsches Elektronen-Synchrotron DESY
- Claire Vallance
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford
- Tiffany Walmsley
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford
- Daniel Rolles
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University
- Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY
- Michael Burt
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford
- Ruaridh Forbes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory
- DOI
- https://doi.org/10.1038/s42005-023-01414-7
- Journal volume & issue
-
Vol. 6,
no. 1
pp. 1 – 11
Abstract
Abstract Structural imaging of transient excited-state species is a key goal of molecular physics, promising to unveil rich information about the dynamics underpinning photochemical transformations. However, separating the electronic and nuclear contributions to the spectroscopic observables is challenging, and typically requires the application of high-level theory. Here, we employ site-selective ionisation via ultrashort soft X-ray pulses and time-resolved Coulomb explosion imaging to interrogate structural dynamics of the ultraviolet photochemistry of carbon disulfide. This prototypical system exhibits the complex motifs of polyatomic photochemistry, including strong non-adiabatic couplings, vibrational mode couplings, and intersystem crossing. Immediately following photoexcitation, we observe Coulomb explosion signatures of highly bent and stretched excited-state geometries involved in the photodissociation. Aided by a model to interpret such changes, we build a comprehensive picture of the photoinduced nuclear dynamics that follows initial bending and stretching motions, as the reaction proceeds towards photodissociation.