Evolutionary Applications (Jun 2019)

No additive genetic variance for tolerance to ethynylestradiol exposure in natural populations of brown trout (Salmo trutta)

  • Lucas Marques da Cunha,
  • Anshu Uppal,
  • Emily Seddon,
  • David Nusbaumer,
  • Etienne L.M. Vermeirssen,
  • Claus Wedekind

DOI
https://doi.org/10.1111/eva.12767
Journal volume & issue
Vol. 12, no. 5
pp. 940 – 950

Abstract

Read online

Abstract One of the most common and potent pollutants of freshwater habitats is 17‐alpha‐ethynylestradiol (EE2), a synthetic component of oral contraceptives that is not completely eliminated during sewage treatment and that threatens natural populations of fish. Previous studies found additive genetic variance for the tolerance against EE2 in different salmonid fishes and concluded that rapid evolution to this type of pollution seems possible. However, these previous studies were done with fishes that are lake‐dwelling and hence typically less exposed to EE2 than river‐dwelling species. Here, we test whether there is additive genetic variance for the tolerance against EE2 also in river‐dwelling salmonid populations that have been exposed to various concentrations of EE2 over the last decades. We sampled 287 adult brown trout (Salmo trutta) from seven populations that show much genetic diversity within populations, are genetically differentiated, and that vary in their exposure to sewage‐treated effluent. In order to estimate their potential to evolve tolerance to EE2, we collected their gametes to produce 730 experimental families in blockwise full‐factorial in vitro fertilizations. We then raised 7,302 embryos singly in 2‐ml containers each and either exposed them to 1 ng/L EE2 (an ecologically relevant concentration, i.e., 2 pg per embryo added in a single spike to the water) or sham‐treated them. Exposure to EE2 increased embryo mortality, delayed hatching time, and decreased hatchling length. We found no population differences and no additive genetic variance for tolerance to EE2. We conclude that EE2 has detrimental effects that may adversely affect population even at a very low concentration, but that our study populations lack the potential for rapid genetic adaptation to this type of pollution. One possible explanation for the latter is that continuous selection over the last decades has depleted genetic variance for tolerance to this synthetic stressor.

Keywords