Animals (Oct 2022)

WGCNA Analysis of Important Modules and Hub Genes of Compound Probiotics Regulating Lipid Metabolism in Heat-Stressed Broilers

  • Lihuan Zhang,
  • Xuan Liu,
  • Hao Jia

DOI
https://doi.org/10.3390/ani12192644
Journal volume & issue
Vol. 12, no. 19
p. 2644

Abstract

Read online

This study aimed to study compound probiotics’ (Lactobacillus casei, Lactobacillus acidophilus and Bifidobacterium) effects on production performance, lipid metabolism and meat quality in heat-stressed broilers. A total of 400 one-day-old AA broilers were randomly divided into four groups, each containing the same five replicates, with 20 broilers in each replicate. The control (21 °C) and experiment 2 were fed a basic corn–soybean meal diet. Experiment 1 (21 °C) and experiment 3 were fed a basic corn–soybean meal diet with 10 g/kg compound probiotics on days 7 and 28, respectively. The ambient temperature of experiment 2 and experiment 3 was increased to 30–32 °C (9:00–17:00) for 28–42 days, while the temperature for the other time was kept at 21 °C. The results showed that, compared with the control, the production performance and the content of high-density lipoprotein cholesterol in experiment 1 and triglyceride (TG) in experiment 2 increased (p p NKX2-1, TAS2R40, PTH, CPB1, SLCO1B3, GNB3 and AQP7 may be the hub genes of compound probiotics regulating lipid metabolism in heat-stressed broilers. In conclusion, this study identified the key genes of compound probiotics regulating lipid metabolism and provided a theoretical basis for the poultry breeding industry to alleviate heat stress.

Keywords