Resonance tuning of rhythmic movements is disrupted at short time scales: A centrifuge study
Olivier White,
Victor Dehouck,
Nicolas Boulanger,
Frédéric Dierick,
Jan Babič,
Nandu Goswami,
Fabien Buisseret
Affiliations
Olivier White
INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences du Sport, 21000 Dijon, France; Corresponding author
Victor Dehouck
INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences du Sport, 21000 Dijon, France
Nicolas Boulanger
Service de Physique de l’Univers, Champs et Gravitation, UMONS Research Institute for Complex Systems, Université de Mons, 20 Place du Parc, 7000 Mons, Belgium
Frédéric Dierick
CeREF-Technique, Chaussée de Binche 159, 7000 Mons, Belgium; Laboratoire d’Analyse du Mouvement et de la Posture (LAMP), Centre National de Rééducation Fonctionnelle et de Réadaptation—Rehazenter, Rue André Vésale 1, 2674 Luxembourg, Luxembourg; Faculté des Sciences de la Motricité, UCLouvain, Place Pierre de Coubertin 2, 1348 Louvain-la-Neuve, Belgium
Jan Babič
Laboratory for Neuromechanics, and Biorobotics, Jožef Stefan Institute, Ljubljana, Slovenia; Slovenia and also with the Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
Nandu Goswami
Gravitational Physiology and Medicine Research Unit, Otto Loewi Research Center of Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria; College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
Fabien Buisseret
CeREF-Technique, Chaussée de Binche 159, 7000 Mons, Belgium; Service de Physique Nucléaire et Subnucléaire, UMONS Research Institute for Complex Systems, Université de Mons, 20 Place du Parc, 7000 Mons, Belgium
Summary: The human body exploits its neural mechanisms to optimize actions. Rhythmic movements are optimal when their frequency is close to the natural frequency of the system. In a pendulum, gravity modulates this spontaneous frequency. Participants unconsciously adjust their natural pace when cyclically moving the arm in altered gravity. However, the timescale of this adaptation is unexplored. Participants performed cyclic movements before, during, and after fast transitions between hypergravity levels (1g–3g and 3g–1g) induced by a human centrifuge. Movement periods were modulated with the average value of gravity during transitions. However, while participants increased movement pace on a cycle basis when gravity increased (1g–3g), they did not decrease pace when gravity decreased (3g–1g). We highlight asymmetric effects in the spontaneous adjustment of movement dynamics on short timescales, suggesting the involvement of cognitive factors, beyond standard dynamical models.