Symmetry (May 2022)

Finely Modulated LDPE/PS Blends via Synergistic Compatibilization with SEBS-<em>g</em>-MAH and OMMT

  • Nianqing Zhu,
  • Xinxing Gao,
  • Jilei Liang,
  • Yan Wang,
  • Rongjie Hou,
  • Zhongbing Ni

DOI
https://doi.org/10.3390/sym14050974
Journal volume & issue
Vol. 14, no. 5
p. 974

Abstract

Read online

Melt blending is an effective way to prepare new composite materials, but most polymers are incompatible. In order to reduce the interfacial tension and obtain fine and stable morphology with internal symmetric micro-textures, suitable compatibilizers should be added to the blend. The two immiscible polymers, low-density polyethylene (LDPE) and polystyrene (PS), were compatibilized by styrene/ethylene/butylene/styrene block copolymers grafted with maleic anhydride (SEBS-g-MAH) and organomontmorillonite (OMMT). The scanning electron microscope results indicated that the size of the PS phase decreased with increasing the content of SEBS-g-MAH. By introducing OMMT into LDPE/PS/SEBS-g-MAH composites, the compatibility of composites was further improved. The rheological analysis and Cole–Cole plot analysis indicated that the addition of SEBS-g-MAH and OMMT increased the interaction between the two phases. The tensile strength, elongation at break, and impact strength of the LDPE/PS/SEBS-g-MAH (70/30/7, wt%) composite increased by 64%, 255%, and 380%, respectively, compared with the LDPE/PS (70/30, wt%) composite. A small amount of OMMT could synergistically compatibilize the LDPE/PS composite with SEBS-g-MAH. After adding 0.3% OMMT into the LDPE/PS/SEBS-g-MAH system, the tensile strength, elongation at break, and impact strength of the composite were further increased to 18.57 MPa, 71.87%, and 33.28 kJ/m2, respectively.

Keywords