Journal of Agricultural Engineering (Jul 2024)
Intelligent system based on a satellite image detection algorithm and a fuzzy model for evaluating sugarcane crop quality by predicting uncertain climatic parameters
Abstract
The increase in uncertain weather affects agriculture, impacting crop yield and quality, mainly due to the interaction of climatic variables such as temperature, wind speed, and humidity. In addition, soil erosion and nutrient loss are regional problems aggravated by inadequate agricultural practices in developing sugarcane agriculture. The present research proposes an Intelligent System based on a detection algorithm and a fuzzy model to estimate the quality of the sugarcane crop and the probability of the presence of pests and diseases through the prediction of uncertain variables. Wind speed, cloudiness, humidity, and thermal amplitude were considered variables of interest because parameters out of control of these variables generate a state of thermal stress, triggering pests and diseases that reduce crop quality and sugar production. This research uses geospatial information to simplify the exchange of information through a detection algorithm using real-time satellite images and a fuzzy model to estimate crop quality and prevent climate change-related problems. The variables humidity and cloudiness determine sugarcane quality as they are related to crop phenology and the probability that the crop will develop pests and diseases. In contrast, the intelligent system showed a correlation of over 93% for predicting the variables of interest.
Keywords