International Journal of Nanomedicine (Dec 2021)
Anti-Acid Biomimetic Dentine Remineralization Using Inorganic Silica Stabilized Nanoparticles Distributed Electronspun Nanofibrous Mats
Abstract
Chuanzi Liu,1 Zhichao Hao,1 Tao Yang,1 Fushi Wang,2 Feng Sun,3 Wei Teng1 1Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China; 2The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei - MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China; 3Analysis and Testing Center, South China Normal University, Guangzhou, People’s Republic of ChinaCorrespondence: Wei Teng Email [email protected]: To manage the sharp pain of dentine hypersensitivity, various materials are utilized to conduct dentine remineralization. However, many prior materials are limited with their single function and complicated operations. In this study, silica and calcium (strontium) carbonates mineralized nano cellulose fibrous (Si/Ca(Sr)-NCF) mat with the ability to release acid resistant and biomimetic mineralizational silica/calcium (strontium) carbonate co-precipitation nanoparticles (Si/Ca(Sr) NPs) were fabricated. The dentine occluding effects, antibacterial activity and cytocompatibility of the Si/Ca(Sr)-NCF mats were evaluated.Methods: The Si/Ca(Sr)-NCF mats were fabricated by dipping the electrospun nano cellulose fiber (NCF) into silica and calcium (strontium) carbonate liquid. Physicochemical characterizations and ion release were confirmed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ion release assays and transmission electron microscopy (TEM). Sixty dentine discs were randomly divided into five groups: 1, blank NCF; 2, Si/Ca(Sr 0)-NCF; 3, Si/Ca(Sr 0.01)-NCF; 4, Si/Ca(Sr 0.05)-NCF; 5, Si/Ca(Sr 0.1)-NCF. Dentine discs were mineralized by the mats and observed with SEM immediately, after acid challenge and remineralized in artificial saliva. The releasing liquid was investigated by TEM and type I collagen model. Then, antibacterial property and cytocompatibility were evaluated.Results: SEM and TEM results confirmed that the experiment mats continuously released amorphous Si/Ca(Sr) NPs and consequently realized anti-acid dentine biomimetic remineralization. Homogeneous surface coverage and collagen intrafibrillar mineralization in strontium adding groups illustrated the mineralization effect was not only by in site precipitation, but also collagen heterogeneous nucleation. Additionally, acceptable antibacterial and cytocompatibility properties were illustrated in low and middle Sr2+ containing mats.Conclusion: In vitro studies on human dentine discs and type I collagen demonstrated that Si/Ca(Sr)–NCF system was a multifunction system inducing anti-acid, biomimetic, antibacterial and cytocompatible dentine remineralization. This multifunction mat would be a promising DH treatment candidate for complicated exposed dentine surfaces.Keywords: mineralization, silica, dentine hypersensitivity, strontium carbonates, electrospinning