Energies (Jan 2024)
Production of Coconut Oil Bioturbosine without Water by Using Ultrasound as a Source of Energy and Ion Exchange for Its Purification
Abstract
Jet fuel production is a key element in the aviation industry’s strategy to reduce operating costs and environmental impacts. Alternatives are required, and bioturbosine obtained from biomass can replace significant amounts of jet fuel. In this investigation, the properties of the production of bioturbosine from coconut oil and mixtures of B5, B10, B20, B1OO, bottom, and jet fuel were measured according to the ASTM standards. A transesterification reaction between coconut oil and methanol was carried out using ultrasound, resulting in 99.93% conversion of triglycerides into bioturbosine at room temperature for 10 min, with a 6:1 molar ratio of methanol and oil. The catalyst concentration was 1.0 g/100 g of oil, and purification was carried out without water using an ion-exchange resin to remove impurities. The results obtained for density and viscosity were within the regulations. The temperature of the clogging point for a cold filter in the mixtures was up to −30 °C. The average caloric values of mixtures B5, B10, and B20 were 45,042, 44,546, and 43,611 MJ/Kg, respectively. In a copper corrosion test, the result for all samples was class 1A. It is expected that the results of this research may influence the use of bioturbosine in the aviation industry.
Keywords