Talanta Open (Dec 2023)
Verification of the active pharmaceutical ingredient in tablets using a low-cost near-infrared spectrometer
Abstract
The present study investigated the possibilities and limitations of using a low-cost NIR spectrometer for the verification of the presence of the declared active pharmaceutical ingredients (APIs) in tablet formulations, especially for medicine screening studies in low-resource settings. Spectra from 950 to 1650 nm were recorded for 170 pharmaceutical products representing 41 different APIs, API combinations or placebos. Most of the products, including 20 falsified medicines, had been collected in medicine quality studies in African countries. After exploratory principal component analysis, models were built using data-driven soft independent modelling of class analogy (DD-SIMCA), a one-class classifier algorithm, for tablet products of penicillin V, sulfamethoxazole/trimethoprim, ciprofloxacin, furosemide, metronidazole, metformin, hydrochlorothiazide, and doxycycline. Spectra of amoxicillin and amoxicillin/clavulanic acid tablets were combined into a single model. Models were tested using Procrustes cross-validation and by projection of spectra of tablets containing the same or different APIs. Tablets containing no or different APIs could be identified with 100 % specificity in all models. A separation of the spectra of amoxicillin and amoxicillin/clavulanic acid tablets was achieved by partial least squares discriminant analysis. 15 out of 19 external validation products (79 %) representing different brands of the same APIs were correctly identified as members of the target class; three of the four rejected samples showed an API mass percentage of the total tablet weight that was out of the range covered in the respective calibration set. Therefore, in future investigations larger and more representative spectral libraries are required for model building. Falsified medicines containing no API, incorrect APIs, or grossly incorrect amounts of the declared APIs could be readily identified.Variation between different NIR-S-G1 spectroscopic devices led to a loss of accuracy if spectra recorded with different devices were pooled. Therefore, piecewise direct standardization was applied for calibration transfer.The investigated method is a promising tool for medicine screening studies in low-resource settings.