Energies (Oct 2022)
Beeswax–EVA/Activated-Charcoal-Based Fuels for Hybrid Rockets: Thermal and Ballistic Evaluation
Abstract
Beeswax (C46H92O) is a naturally derived substance that has the potential to be used as a solid fuel for hybrid rocket applications and as a substitute for paraffin wax fuel in hybrid rockets. BW burns more efficiently than paraffin wax because of the oxygen molecule it contains. The low thermal stability and poor mechanical properties of BW limit its practical use for upper-stage propulsion applications, and these issues are rarely addressed in the literature on hybrid rockets. This study investigates the thermal stability and ballistic properties of BW using ethylene-vinyl acetate (EVA) and activated charcoal (AC) as an additive. The thermal stability of BW–EVA/AC fuel compositions was analyzed using a thermogravimetric analyzer (TGA). The thermal stability of the blended BW compositions improved significantly. A laboratory-scale hybrid rocket motor was used to evaluate such aspects of ballistic performance as regression rate, characteristic velocity, and combustion efficiency. The results revealed that the pure BW exhibited a higher regression rate of 26.5% at an oxidizer mass flux of 96.4 kg/m2-s compared to BW–EVA/AC blends. The addition of EVA and AC to BW was found to increase the experimental characteristic velocity and combustion efficiency. The combustion efficiency of BW-based fuel was improved from 62% to 94% when 20 wt.% EVA and 2 wt.% AC were added into the fuel matrix.
Keywords