Scientific Reports (Apr 2022)
Capturing water vapors from atmospheric air using superporous gels
Abstract
Abstract Dehumidification performance of most polymer desiccant materials is unsatisfactory because of the complex adsorption mechanism on polymer surface and non-porous structure. A viable alternative of solid desiccants, especially existing polymer desiccants, for capturing water vapors from moist air is the super-porous gels (SPGs). The presence of interconnected channels of pores in its structure facilitates the transfer of water molecules to the internal structure of SPGs. Therefore, in this research work, we are proposing N-isopropylacrylamide (NIPAM) and acrylamide (AM) based thermoresponsive SPGs as a potential alternative to the existing conventional solid desiccants. To ensure the formation of interconnected capillary channels, the SPGs were synthesized via gas blowing and foaming technique. Surface morphology of the SPGs was studied using scanning electron microscopy (SEM) and the other physio-chemical characteristics were studied using different techniques like fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA). Water vapors adsorption properties of the SPGs were explored via adsorption isotherm and kinetics. The adsorption isotherm was found to be of type-III isotherm with a maximum adsorption capacity of 0.75 gw/gads at 25 °C and 90% relative humidity. Experimental isotherm data correlated well with BET, FHH and GAB isotherm models. Adsorption kinetics suggested that the water vapors diffusion followed intraparticle diffusion and liquid field driving mechanisms collectively. SPGs exhibited very good regeneration and reusability for ten continuous adsorption/desorption cycles. Therefore, the dehumidification efficiency of synthesized SPGs shows that they have potential to replace most of the conventional solid desiccant materials in use.