Micromachines (Nov 2024)

An Image Processing Approach to Quality Control of Drop-on-Demand Electrohydrodynamic (EHD) Printing

  • Yahya Tawhari,
  • Charchit Shukla,
  • Juan Ren

DOI
https://doi.org/10.3390/mi15111376
Journal volume & issue
Vol. 15, no. 11
p. 1376

Abstract

Read online

Droplet quality in drop-on-demand (DoD) Electrohydrodynamic (EHD) inkjet printing plays a crucial role in influencing the overall performance and manufacturing quality of the operation. The current approach to droplet printing analysis involves manually outlining/labeling the printed dots on the substrate under a microscope and then using microscope software to estimate the dot sizes by assuming the dots have a standard circular shape. Therefore, it is prone to errors. Moreover, the dot spacing information is missing, which is also important for EHD DoD printing processes, such as manufacturing micro-arrays. In order to address these issues, the paper explores the application of feature extraction methods aimed at identifying characteristics of the printed droplets to enhance the detection, evaluation, and delineation of significant structures and edges in printed images. The proposed method involves three main stages: (1) image pre-processing, where edge detection techniques such as Canny filtering are applied for printed dot boundary detection; (2) contour detection, which is used to accurately quantify the dot sizes (such as dot perimeter and area); and (3) centroid detection and distance calculation, where the spacing between neighboring dots is quantified as the Euclidean distance of the dot geometric centers. These stages collectively improve the precision and efficiency of EHD DoD printing analysis in terms of dot size and spacing. Edge and contour detection strategies are implemented to minimize edge discrepancies and accurately delineate droplet perimeters for quality analysis, enhancing measurement precision. The proposed image processing approach was first tested using simulated EHD printed droplet arrays with specified dot sizes and spacing, and the achieved quantification accuracy was over 98% in analyzing dot size and spacing, highlighting the high precision of the proposed approach. This approach was further demonstrated through dot analysis of experimentally EHD-printed droplets, showing its superiority over conventional microscope-based measurements.

Keywords