Veterinary World (Apr 2024)

Profile of stingless bee honey and microbiota produced in West Sumatra, Indonesia, by several species (Apidae, Meliponinae)

  • Sri Melia,
  • Indri Juliyarsi,
  • Yulianti Fitri Kurnia,
  • Salam N. Aritonang,
  • Rusdimansyah Rusdimansyah,
  • Ade Sukma,
  • Rizki Dwi Setiawan,
  • Yudha Endra Pratama,
  • Doni Supandil

DOI
https://doi.org/10.14202/vetworld.2024.785-795
Journal volume & issue
Vol. 17, no. 4
pp. 785 – 795

Abstract

Read online

Background and Aim: Stingless bees are generally found in tropical countries, including Indonesia. In West Sumatra, stingless bees are known as Galo-galo, consist of several species with different characteristics; however, the properties of honey produced by stingless bees have not yet been explored. This study aimed to determine the physicochemical, antioxidant, and antimicrobial activities as well as the microbiota profile of stingless bee honey from the bee species Heterotrigona itama, Geniotrigona thoracica, Tetrigona melanoleuca, and Tetrigona binghami that are intensively developed in West Sumatra, Indonesia. Materials and Methods: Honey produced by the stingless bee species H. itama, G. thoracica, T. melanoleuca, and T. binghami originating in West Sumatra was examined in the present study. The physicochemical properties (Association of Official Analytical Chemists), antioxidant activity (2,2-diphenyl-1-picrylhydrazyl technique), total phenols (Folin- Ciocalteu method), antimicrobial activity (Agar-Well diffusion test), total lactic acid bacteria, and microbiota diversity were measured in stingless bee honey samples. Results: Stingless bee species significantly affected the physicochemical properties, antioxidant activity, total phenolic content, antimicrobial activity, and total lactic acid bacteria (p = 0.05), except for the crude fiber content. The carbohydrate profiles of honey produced by H. itama and T. binghami were dominated by monosaccharides, whereas those of honey from T. melanoleuca and G. thoracica were dominated by disaccharides. In terms of antioxidant activity (half maximal inhibitory concentration [IC50] value), there were no significant differences (p > 0.05) between honey from H. itama, T. melanoleuca, and T. binghami, but there were significant differences (p > 0.05) between honey from G. thoracica. The honey of G. thoracica and T. melanoleuca had the highest total phenolic content (65.65 ± 14.00 and 69.78 ± 8.06, respectively). In addition, honey from the four stingless bee species showed antimicrobial activity against the pathogenic bacteria Escherichia coli, Salmonella, Staphylococcus aureus, and Listeria monocytogenes. From the principal co-ordinate analysis (PCoA) results, it can be concluded that the microbiota profiles of the four stingless bee honey samples differed. Conclusion: The results showed that honey from H. itama, G. thoracica, T. melanoleuca, and T. binghami has different physicochemical characteristics, antioxidant activity, antimicrobial activity, and microbiota diversity. By knowing the content of this stingless bee honey, the results of this study can be used as information that this stingless bee honey has the potential as a functional food that is beneficial for health.

Keywords