Biotechnology for Biofuels (Feb 2019)

Construction of consolidated bio-saccharification biocatalyst and process optimization for highly efficient lignocellulose solubilization

  • Shiyue Liu,
  • Ya-Jun Liu,
  • Yingang Feng,
  • Bin Li,
  • Qiu Cui

DOI
https://doi.org/10.1186/s13068-019-1374-2
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background The industrial conversion of biomass to high-value biofuels and biochemical is mainly restricted by lignocellulose solubilization. Consolidated bio-saccharification (CBS) is considered a promising process for lignocellulose solubilization depending on whole-cell biocatalysts that simultaneously perform effective cellulase production and hydrolysis. However, it usually takes a long time to reach a high saccharification level using the current CBS biocatalyst and process. Results To promote the saccharification efficiency and reduce the cost, a Clostridium thermocellum recombinant strain ∆pyrF::KBm was constructed as a new CBS biocatalyst in this study. The key CBS factors, including the medium, inoculum size and cultivation, and substrate load, were investigated and optimized. The saccharification process was also stimulated by adding free hemicellulases, suggesting the need to further enhance hemicellulase activity of the whole-cell catalyst. Under the optimal conditions, the CBS process was shortened by 50% with pretreated wheat straw as the substrate. The sugar yield reached 0.795 g/g and the saccharification level was 89.3%. Conclusions This work provided a new biocatalyst and an optimized process of CBS and confirmed that CBS is a feasible strategy for cost-efficient solubilization of lignocellulose, which will greatly promote the industrial utilization of lignocellulosic biomass.

Keywords