Antioxidants (Jul 2022)

Butein Ameliorates Oxidative Stress in H9c2 Cardiomyoblasts through Activation of the NRF2 Signaling Pathway

  • Tsendsuren Tungalag,
  • Kye Won Park,
  • Dong Kwon Yang

DOI
https://doi.org/10.3390/antiox11081430
Journal volume & issue
Vol. 11, no. 8
p. 1430

Abstract

Read online

Oxidative stress, defined as an imbalance between reactive oxygen species (ROS) production and the antioxidant defense system, contributes to the pathogenesis of many heart diseases. Therefore, oxidative stress has been highlighted as a therapeutic target for heart disease treatment. Butein, a tetrahydroxychalcone, has potential biological activities, especially antioxidant properties. However, the effect of butein on oxidative-stressed heart cells has been poorly studied. Thus, we sought to identify the antioxidant effects of butein in H9c2 cardiomyoblasts. To elucidate these antioxidant effects, various concentrations of butein were used to pretreat H9c2 cells prior to H2O2 treatment. Thereafter, measures of oxidative damages, such as ROS production, antioxidant expression levels, and apoptosis, were evaluated. Butein effectively increased cell viability and rescued the cells from oxidative damage through the inhibition of ROS production, apoptosis, and increased antioxidant expression. Furthermore, butein dramatically inhibited mitochondrial dysfunction and endoplasmic reticulum (ER) stress, which are the main ROS inducers. Nrf2 protein translocated from the cytosol to the nucleus and consequently activated its target genes as oxidative stress suppressors. These findings demonstrate that butein has potential antioxidant effects in H9c2 cardiomyoblasts, suggesting that it could be used as a therapeutic substance for the treatment of cardiac diseases.

Keywords