Scientific Reports (Nov 2023)

Thrombospondin1 antagonist peptide treatment attenuates obesity-associated chronic inflammation and metabolic disorders in a diet-induced obese mouse model

  • Qi Zhou,
  • Taesik Gwag,
  • Shuxia Wang

DOI
https://doi.org/10.1038/s41598-023-47635-2
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Thrombospondin1 (TSP1) is a multifunctional matricellular protein. Previously, we demonstrated that TSP1 plays a pivotal role in obesity-related inflammation and insulin resistance (IR) by modulating macrophage accumulation and activation in adipose tissue. Moreover, in our in vitro studies, a CD36-derived peptide, functioning as a TSP1 antagonist, effectively inhibited TSP1-induced proinflammatory macrophage activation. However, whether this CD36 peptide can inhibit obesity-induced inflammation and IR in vivo is unknown and determined in this study in a high fat diet-induced obese mouse model (DIO). CD36 peptide or control peptide was intraperitoneally administered into the established obese mice triweekly for 6 weeks. We found that CD36 peptide treatment didn’t affect obesity or weight gain but significantly reduced proinflammatory cytokine production systemically and in visceral fat tissue. Adipose tissue exhibited fewer crown-like structures and reduced macrophage infiltration. CD36 peptide treatment also attenuated the proinflammatory phenotype of bone marrow derived macrophages from obese mice. Furthermore, CD36 peptide treatment improved glucose tolerance and insulin sensitivity, and mitigated obesity-related fatty liver disease and kidney damage. Collectively, this study suggests that the CD36 peptide, as a TSP1 antagonist, shows promise as a novel therapeutic approach for managing obesity-related metabolic disorders.