Membranes (Aug 2021)

Structure-Property Relationship on the Example of Gas Separation Characteristics of Poly(Arylene Ether Ketone)s and Poly(Diphenylene Phtalide)

  • Alexandre Alentiev,
  • Sergey Chirkov,
  • Roman Nikiforov,
  • Mikhail Buzin,
  • Oleg Miloserdov,
  • Victoria Ryzhikh,
  • Nikolay Belov,
  • Vera Shaposhnikova,
  • Sergey Salazkin

DOI
https://doi.org/10.3390/membranes11090677
Journal volume & issue
Vol. 11, no. 9
p. 677

Abstract

Read online

Three poly(arylene ether ketone)s (PAEKs) with propylidene (C1, C2) and phtalide (C3) fragments, and one phtalide-containing polyarylene (C4), were synthesized. Their chemical structures were confirmed via 1H NMR, 13C NMR and 19F NMR spectroscopy. The polymers have shown a high glass transition temperature (>155 °C), excellent film-forming properties, and a high free volume for this polymer type. The influence of various functional groups in the structure of PAEKs was evaluated. Expectedly, due to higher free volume the introduction of hexafluoropropylidene group to PAEK resulted in higher increase of gas permeability in comparison with propylidene group. The substitution of the fluorine-containing group on a rigid phtalide moiety (C3) significantly increases glass transition temperature of the polymer while gas permeation slightly decreases. Finally, the removal of two ether groups from PAEK structure (C4) leads to a rigid polymer chain that is characterized by highest free volume, gas permeability and diffusion coefficients among the PAEKs under investigation. Methods of modified atomic (MAC) and bond (BC) contributions were applied to estimate gas permeation and diffusion. Both techniques showed reasonable predicted parameters for three polymers while a significant underestimation of gas transport parameters was observed for C4. Gas solubility coefficients for PAEKs were forecasted by “Short polymer chain surface based pre-diction” (SPCSBP) method. Results for all three prediction methods were compared with the ex-perimental data obtained in this work. Predicted parameters were in good agreement with ex-perimental data for phtalide-containing polymers (C3 and C4) while for propylidene-containing poly(arylene ether ketone)s they were overestimated due to a possible influence of propylidene fragment on indices of oligomeric chains. MAC and BC methods demonstrated better prediction power than SPCSBP method.

Keywords