Land (May 2025)

Forest Fire Risk Prediction in South Korea Using Google Earth Engine: Comparison of Machine Learning Models

  • Jukyeong Choi,
  • Youngjo Yun,
  • Heemun Chae

DOI
https://doi.org/10.3390/land14061155
Journal volume & issue
Vol. 14, no. 6
p. 1155

Abstract

Read online

Forest fires pose significant threats to ecosystems, economies, and human lives. However, existing forest fire risk assessments are over-reliant on field data and expert-derived indices. Here, we assessed the nationwide forest fire risk in South Korea using a dataset of 2289 and 4578 fire and non-fire events between 2020 and 2023. Twelve remote sensing-based environmental variables were exclusively derived from Google Earth Engine, including climate, vegetation, topographic, and socio-environmental factors. After removing the snow equivalent variable owing to high collinearity, we trained three machine learning models: random forest, XGBoost, and artificial neural network, and evaluated their ability to predict forest fire risks. XGBoost showed the best performance (F1 = 0.511; AUC = 0.76), followed by random forest (F1 = 0.496) and artificial neural network (F1 = 0.468). DEM, NDVI, and population density consistently ranked as the most influential predictors. Spatial prediction maps from each model revealed consistent high-risk areas with some local prediction differences. These findings demonstrate the potential of integrating cloud-based remote sensing with machine learning for large-scale, high-resolution forest fire risk modeling and have implications for early warning systems and effective fire management in vulnerable regions. Future predictions can be improved by incorporating seasonal, real-time meteorological, and human activity data.

Keywords