Stem cell and cell therapies, particularly autologous cell therapies, are becoming a common practice. However, in order for these technologies to achieve wide-scale clinical application, the prohibitively high cost associated with these therapies must be addressed through creative engineering. Membranes can be a disruptive technology to reshape the bioprocessing and manufacture of cellular products and significantly reduce the cost of autologous cell therapies. Examples of successful membrane applications include expansions of CAR-T cells, various human stem cells, and production of extracellular vesicles (EVs) using hollow fibre membrane bioreactors. Novel membranes with tailored functions and surface properties and novel membrane modules that can accommodate the changing needs for surface area and transport properties are to be developed to fulfil this key role.