Peer Community Journal (Dec 2021)

The taxonomic and functional biogeographies of phytoplankton and zooplankton communities across boreal lakes

  • St-Gelais, Nicolas F.,
  • Vogt, Richard J.,
  • del Giorgio, Paul A.,
  • Beisner, Beatrix E.

DOI
https://doi.org/10.24072/pcjournal.74
Journal volume & issue
Vol. 1

Abstract

Read online

Strong trophic interactions link primary producers (phytoplankton) and consumers (zooplankton) in lakes. However, the influence of such interactions on the biogeographical distribution of the taxa and functional traits of planktonic organisms in lakes has never been explicitly tested. To better understand the spatial distribution of these two major aquatic groups, we related composition across boreal lakes (104 for zooplankton and 48 for phytoplankton) in relation to a common suite of environmental and spatial factors. We then directly tested the degree of coupling in their taxonomic and functional distributions across the subset of common lakes. Although phytoplankton composition responded mainly to properties related to water quality while zooplankton composition responded more strongly to lake morphometry, we found significant coupling between their spatial distributions at taxonomic and functional levels based on a Procrustes test. This coupling was not significant after removing the effect of environmental drivers (water quality and morphometry) on the spatial distributions of the two groups. This result suggests that top-down and bottom-up effects (e.g. nutrient concentration and predation) drove trophic interactions at the landscape level. We also found a significant effect of dispersal limitation on the distribution of taxa, which could explain why coupling was stronger for taxa than for traits at the scale of this study, with a turnover of species observed between regions, but no trait turnover. Our results indicate that landscape pelagic food web responses to anthropogenic changes in ecosystem parameters should be driven by a combination of top-down and bottom-factors for taxonomic composition, but with a relative resilience in functional trait composition of lake communities.