Remote Sensing (Feb 2018)

Analysis of Permafrost Region Coherence Variation in the Qinghai–Tibet Plateau with a High-Resolution TerraSAR-X Image

  • Zhengjia Zhang,
  • Chao Wang,
  • Hong Zhang,
  • Yixian Tang,
  • Xiuguo Liu

DOI
https://doi.org/10.3390/rs10020298
Journal volume & issue
Vol. 10, no. 2
p. 298

Abstract

Read online

The Qinghai–Tibet Plateau (QTP) is heavily affected by climate change and has been undergoing serious permafrost degradation due to global warming. Synthetic aperture radar interferometry (InSAR) has been a significant tool for mapping surface features or measuring physical parameters, such as soil moisture, active layer thickness, that can be used for permafrost modelling. This study analyzed variations of coherence in the QTP area for the first time with high-resolution SAR images acquired from June 2014 to August 2016. The coherence variation of typical ground targets was obtained and analyzed. Because of the effects of active-layer (AL) freezing and thawing, coherence maps generated in the Beiluhe permafrost area exhibits seasonal variation. Furthermore, a temporal decorrelation model determined by a linear temporal-decorrelation component plus a seasonal periodic-decorrelation component and a constant component have been proposed. Most of the typical ground targets fit this temporal model. The results clearly indicate that railways and highways can hold high coherence properties over the long term in X-band images. By contrast, mountain slopes and barren areas cannot hold high coherence after one cycle of freezing and thawing. The possible factors (vegetation, soil moisture, soil freezing and thawing, and human activity) affecting InSAR coherence are discussed. This study shows that high-resolution time series of TerraSAR-X coherence can be useful for understanding QTP environments and for other applications.

Keywords