Asian Journal of Pharmaceutical Sciences (Mar 2022)
Impact of the amount of PEG on prodrug nanoassemblies for efficient cancer therapy
Abstract
PEGylation has been widely used to improve the pharmacokinetic properties of prodrug self-assembled nanoparticles (prodrug-SANPs). However, the impacts of the amount of PEG on the self-assemble stability, cellular uptake, pharmacokinetics, and antitumor efficacy of prodrug-SANPs are still unknown. Herein, selenoether bond bridged docetaxel dimeric prodrug was synthesized as the model prodrug. Five prodrug-SANPs were designed by using different mass ratios of prodrugs to PEG (Wprodrug/WDSPE-mPEG2000 = 10:0, 9:1, 8:2, 7:3 and 6:4), and defined as Pure drug NPs, 9:1NPs, 8:2NPs, 7:3 NPs and 6:4 NPs, respectively. Interestingly, 8:2 NPs formed the most compact nanostructure, thus improving the self-assemble stability and pharmacokinetics behavior. In addition, the difference of these prodrug-SANPs in cellular uptake was investigated, and the influence of PEG on cytotoxicity and antitumor efficacy was also clarified in details. The 8:2 NPs exhibited much better antitumor efficacy than other prodrug-SANPs and even commercial product. Our findings demonstrated the pivotal role of the amount of PEG on prodrug-SANPs.