Heritage Science (Sep 2021)

The influence of light and relative humidity on the formation of epsomite in cadmium yellow and French ultramarine modern oil paints

  • Jessie Harrison,
  • Judith Lee,
  • Bronwyn Ormsby,
  • David J. Payne

DOI
https://doi.org/10.1186/s40494-021-00569-2
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 17

Abstract

Read online

Abstract The effect of relative humidity (RH) and light on the development of epsomite (MgSO4·7H2O) in Winsor & Newton cadmium yellow (CY) and French ultramarine (FU) artists’ oil colour paints was investigated. Tube paint samples were aged for 12 weeks at either 50% or 75% RH, under ambient light (200 ± 1 lx), elevated light (11,807 ± 328 lx), and near-dark conditions. Aged paint samples were characterised using light microscopy (LM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Results indicated that ageing at 75% RH in elevated light conditions, promoted the formation of hydrated magnesium sulphate (MgSO4·6–7H2O) crystals on the surface of both paints. The formation of sodium sulphate (Na2SO4) as a degradation product of French ultramarine oil paints after ageing at 75% RH in elevated light conditions is described. The formation of magnesium sulphate crystals in the absence of elevated SO2 is a new finding. For both cadmium yellow and French ultramarine oil paints, the pigments present are a likely source of sulphur, enabling the formation of sulphate salts, i.e., cadmium sulphide (CdS) yellow, and the sulphur radical anions (S3 −) present in ultramarine pigment. Sulphur-containing impurities arising from pigment manufacture are an additional possibility. It was previously theorised that epsomite formation in water-sensitive twentieth century oil paintings resulted from exposure to the elevated atmospheric sulphur dioxide (SO2) levels of the 1950s–1970s. This study demonstrates that hydromagnesite-containing cadmium yellow and French ultramarine oil paints of any period may be vulnerable to water-soluble sulphate salts formation and that this process is promoted by exposure to light and high (75%) RH environments. The formation of sulphate salts as a degradation product is known to contribute toward the development of water sensitivity of modern oil paintings which can pose significant challenges to conservation. Therefore this study highlights the importance of minimising exposure to light and raised relative humidity for paintings containing such CY and FU oil paint passages, to help slow down these types of degradation phenomena which have implications for preservation.

Keywords