Journal of Power Sources Advances (Aug 2021)

Wet/dry cycle durability of polyphenylene ionomer membranes in PEFC

  • Toshiki Tanaka,
  • Haruhiko Shintani,
  • Yasushi Sugawara,
  • Akihiro Masuda,
  • Nobuyuki Sato,
  • Makoto Uchida,
  • Kenji Miyatake

Journal volume & issue
Vol. 10
p. 100063

Abstract

Read online

The mechanical durability of our hydrocarbon polymer electrolyte membrane, poly(sulfophenylene quinquephenylene) (SPP-QP) or polyphenylene ionomer, was evaluated in wet/dry cycle tests in fuel cells according to the US-DOE protocol, where the effect of gas diffusion layers (hard or soft GDL) was investigated. The membrane exhibited mechanical failure with the hard GDL and H2 crossover (permeation through the membrane) jumping from 0.01% to ca. 2% after 4,000 cycles. Post-test analyses indicated that the edge of the membrane under the gasket was the most damaged, where the dimensional change upon humidification/dehumidification was restricted. Use of the soft GDL significantly improved the wet/dry cycle durability of the membrane with no practical changes in the H2 crossover, even after 30,000 cycles, due to the strong adhesion of the GDL to the catalyst layers. The mechanical durability of the SPP-QP membrane was better than that of our previous aromatic-based ionomer membrane containing ether and ketone groups in the main chain. The loss of molecular weight and the sulfonic acid groups was rather minor for the SPP-QP membrane, indicating chemical robustness of the membrane under the severe wet/dry cycle conditions.

Keywords