Brain Sciences (Mar 2022)
Autocrine Neuromodulation and Network Activity Patterns in the Locus Coeruleus of Newborn Rat Slices
Abstract
Already in newborns, the locus coeruleus (LC) controls multiple brain functions and may have a complex organization as in adults. Our findings in newborn rat brain slices indicate that LC neurons (i) generate at ~1 Hz a ~0.3 s-lasting local field potential (LFP) comprising summated phase-locked single spike discharge, (ii) express intrinsic ‘pacemaker’ or ‘burster’ properties and (iii) receive solely excitatory or initially excitatory–secondary inhibitory inputs. μ-opioid or ɑ2 noradrenaline receptor agonists block LFP rhythm at 100–250 nM whereas slightly lower doses transform its bell-shaped pattern into slower crescendo-shaped multipeak bursts. GABAA and glycine receptors hyperpolarize LC neurons to abolish rhythm which remains though unaffected by blocking them. Rhythm persists also during ionotropic glutamate receptor (iGluR) inhibition whereas 2+ rise occurs (without effect on neighboring astrocytes) during LFP acceleration by CNQX activating a TARP-AMPA-type iGluR complex. In contrast, noradrenaline lowers neuronal Ca2+ baseline via ɑ2 receptors, but evokes an ɑ1 receptor-mediated ‘concentric’ astrocytic Ca2+ wave. In summary, the neonatal LC has a complex (possibly modular) organization to enable discharge pattern transformations that might facilitate discrete actions on target circuits.
Keywords