Femtosecond Laser Microprinting of a Polymer Optical Fiber Interferometer for High-Sensitivity Temperature Measurement
Chi Li,
Changrui Liao,
Jia Wang,
Zongsong Gan,
Yiping Wang
Affiliations
Chi Li
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Changrui Liao
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Jia Wang
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Zongsong Gan
Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan 430074, China
Yiping Wang
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Femtosecond laser induced multi-photon polymerization technique can be applied to fabricate an ultracompact polymer optical fiber interferometer which was embedded in a section of hollow core fiber. The production of the photoresin, used in this work, is described. Such a device has been used for temperature measurement, due to its excellent thermal properties. Transmission spectrum, structural morphology, and temperature response of the polymer optical fiber interferometer are experimentally investigated. A high wavelength sensitivity of 6.5 nm/°C is achieved over a temperature range from 25 °C to 30 °C. The proposed polymer optical fiber interferometer exhibits high temperature sensitivity, excellent mechanical strength, and ultra-high integration. More complex fiber-integrated polymer function micro/nano structures produced by this technique may result in more applications in optical fiber communication and optical fiber sensors.