Pharmaceutics (Jan 2023)

Non-Covalent Linkage of Helper Functions to Dumbbell-Shaped DNA Vectors for Targeted Delivery

  • Pei She Loh,
  • Volker Patzel

DOI
https://doi.org/10.3390/pharmaceutics15020370
Journal volume & issue
Vol. 15, no. 2
p. 370

Abstract

Read online

Covalently closed dumbbell-shaped DNA delivery vectors comprising the double-stranded gene(s) of interest and single-stranded hairpin loops on both ends represent a safe, stable and efficacious alternative to viral and other non-viral DNA-based vector systems. As opposed to plasmids and DNA minicircles, dumbbells can be conjugated via the loops with helper functions for targeted delivery or imaging. Here, we investigated the non-covalent linkage of tri-antennary N-acetylgalactosamine (GalNAc3) or a homodimer of a CD137/4-1BB-binding aptamer (aptCD137-2) to extended dumbbell vector loops via complementary oligonucleotides for targeted delivery into hepatocytes or nasopharyngeal cancer cells. Enlarging the dumbbell loop size from 4 to 71 nucleotides for conjugation did not impair gene expression. GalNAc3 and aptCD137-2 residues were successfully attached to the extended dumbbell loop via complementary oligonucleotides. DNA and RNA oligonucleotide-based dumbbell-GalNAc3 conjugates were taken up from the cell culture medium by hepatoblastoma-derived human tissue culture cells (HepG2) with comparable efficiency. RNA oligonucleotide-linked conjugates triggered slightly higher levels of gene expression, presumably due to the RNaseH-mediated linker cleavage, the release of the dumbbell from the GalNAc3 residue and more efficient nuclear targeting of the unconjugated dumbbell DNA. The RNaseH-triggered RNA linker cleavage was confirmed in vitro. Finally, we featured dumbbell vectors expressing liver cancer cell-specific RNA trans-splicing-based suicide RNAs with GalNAc3 residues. Dumbbells conjugated with two GalNAc3 residues triggered significant levels of cell death when added to the cell culture medium. Dumbbell vector conjugates can be explored for targeted delivery and gene therapeutic applications.

Keywords