Nanomaterials (Jun 2024)
A Novel Nano-Laminated GdB<sub>2</sub>C<sub>2</sub> with Excellent Electromagnetic Wave Absorption Performance and Ultra-High-Temperature Thermostability
Abstract
A novel nano-laminated GdB2C2 material was successfully synthesized using GdH2, B4C, and C via an in situ solid-state reaction approach for the first time. The formation process of GdB2C2 was revealed based on the microstructure and phase evolution investigation. Purity of 96.4 wt.% GdB2C2 was obtained at a low temperature of 1500 °C, while a nearly fully pure GdB2C2 could be obtained at a temperature over 1700 °C. The as-obtained GdB2C2 presented excellent thermal stability at a high temperature of 2100 °C in Ar atmosphere due to the stable framework formed by the high-covalence four-member and eight-member B-C rings in GdB2C2. The GdB2C2 material synthesized at 1500 °C demonstrated a remarkably low minimum reflection loss (RLmin) of −47.01 dB (3.44 mm) and a broad effective absorption bandwidth (EAB) of 1.76 GHz. The possible electromagnetic wave absorption (EMWA) mechanism could be ascribed to the nano-laminated structure and appropriate electrical conductivity, which facilitated good impedance matching, remarkable conduction loss, and interfacial polarization, along with the reflection and scattering of electromagnetic waves at multiple interfaces. The GdB2C2, with excellent EMWA performance as well as remarkable ultra-high-temperature thermal stability, could be a promising candidate for the application of EMWA materials in extreme ultra-high temperatures.
Keywords