مجله مدل سازی در مهندسی (Apr 2021)
Numerical investigation of flow velocity and shear stress in a rough rectangular compound channel with single floodplain
Abstract
Flow in compound sections, due to the differences in velocity between the main channel and floodplains, is structurally quite different from that in simple channel sections. In the present research work, FLOW3D software was applied in a rough rectangular compound channel with single floodplain. The model geometry was selected from the experimental channel by Bousmar (2002), and the numerical solution results were validated by comparing the depth-averaged velocity parameter. The purpose of this study was to investigate the effects of roughness, depth and relative width on flow velocity distribution, bed shear stress variation, and location of maximum stress in compound channel sections and simulated flow for 3 relative roughness values of 1, 2 and 2.9. Results showed that flow rate difference between the main channel and floodplain as the generator of shear stress and secondary flows in those sections increased by 3 times. Relative roughness for the Model A, 33.5% and for Model B, increased by 15.12%. While the relative depth parameter increased from 65% (from 0.2 to 0.33), the difference for the two models A and B decreased to 36.32% and 37.85%, respectively. So, it seems that using Model B is more appropriate for high relative roughness. Also, by increasing the relative depth from 0.2 to 0.33 in all the relative roughness values studied, the location of maximum shear stress for both models changed from the main channel to the floodplain.
Keywords